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Abstract

The lattice Boltzmann method (LBM) is used to investigate one-dimensional, multi-length and -time scale transient
heat conduction in crystalline semiconductor solids, in which sub-continuum effects are important. The implementation
of this method and its application to electronic devices are described. A silicon-on-insulator transistor subject to Joule
heating conditions is used as a case study to illustrate the essence of the LBM. We compare our LBM results, for the
diffusive to the ballistic transport regimes, with various hierarchical methodologies of heat transport such as the Fou-
rier, Cattaneo, and ballistic-diffusive transport equations.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

As the characteristic dimensions of electronic devices
become smaller, the ability to model sub-continuum
energy transfer effects has become increasingly impor-
tant. It is now well established that the continuum-based
Fourier equation of heat conduction leads to erroneous
results when the mean free path of the heat carriers
becomes comparable, or larger, than the characteristic
length of the domain of interest [1]. In addition, Fourier
law assumes an instantaneous heat propagation, which
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leads to significant errors in the thermal predictions as
the time scale of interest becomes comparable or smaller
than the relaxation time of the heat carriers [2]. It has
been reported that for crystalline semiconductor devices,
acoustic phonons, which are quantized lattice vibra-
tions, are the dominant energy carriers at the room tem-
perature. Under the gray model, which considers a linear
dispersion relationship with a single propagating mode,
following the Debye assumption, the phonon mean free
path, K, and relaxation time, sr, for silicon are computed
to be 41 nm and 6.5 ps respectively. The phonon group
velocity, v can be obtained from the slope of the disper-
sion relation, and is 6400 m/s. The phonon mean free
path and relaxation time are related by the phonon
group velocity (v) as K = vsr. When considering a
semi-gray model, with one propagating (acoustic) mode
ed.
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Nomenclature

b hotspot width, m
c phonon velocity, m/s
d number of lattice directions
Dp phonon density of states per unit volume,

m�3

e phonon energy density, J m�3

e0 equilibrium phonon energy density, J m�3

f phonon distribution function
f 0 equilibrium phonon distribution function
ge–p phonon generation rate due to electron–

phonon scattering
�h Planck constant divided by 2p, J s�1

k thermal conductivity, W m�1 K�1

kb Boltzmann constant, J K�1

Kn Knudsen number, K/L
l length, m
L characteristic length, m
p polarization
q heat flux, W m�2

qv heat generation rate per unit volume,
W m�3

t time, s
t � dimensionless time, t/s
T absolute temperature, K
v phonon group velocity, m/s

W grid weight factor
X � dimensionless length

Greek symbols

hD Debye temperature of solid, K
g number density of oscillators
K phonon mean free path, m
k phonon wavelength, m
r Stefan–Boltzmann constant, J s�1 m�2 K�4

sc phonon collision time, s
sr phonon relaxation time, s
x phonon frequency, Hz

Subscripts

c collision
i direction
p polarization
r relaxation
w wall
x, y, z directions

Superscripts

0 equilibrium
� dimensionless
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and one reservoir (optical) mode, the phonon mean free
path K is computed to be 300 nm, and the phonon relax-
ation time sr to be 70 ps . Current transistor technology,
for example, is yielding devices with channel lengths
within the 90 nm technology node, and even smaller
channel lengths (65 nm technology node) are in the
development phase [3]. Even when the actual values of
K and sr are still a subject of discussion [4–6], it is clear
that phonon transport in sub-micron semiconductor
structures is likely to be within the sub-continuum
regime and, therefore, more accurate and consistent
models for phonon transport are needed. An example
of an electronic device where sub-continuum thermal
effects are important are the transistors built with the sil-
icon-on-insulator (SOI) technology, where a thin silicon
layer is deposited on top of a silicon dioxide layer, which
allows faster device switching speeds due to the reduced
capacitive coupling with the substrate [5,6]. The high
electric field strengths generated within the device accel-
erate the electrons, which interact with high-energy pho-
nons, transferring their energy mainly to the optical
branch of phonons. Very slow propagation speed of
optical phonons prevents the thermal energy from leav-
ing the electron–phonon interaction zone. These high-
energy optical phonons decay to faster propagating
acoustic phonons that transport thermal energy away
from the interaction zone. As the timescale of the elec-
tron–phonon scattering process is much faster than the
decay from optical to acoustic modes, local non-equilib-
rium conditions arise, which directly translate into a hot-
spot region that displays higher temperature levels than
those predicted by the continuum-based Fourier equa-
tion. The dimensions of this hotspot zone (on the order
of 10–30 nm) have been reported to be smaller than the
phonon mean free path, therefore rendering Fourier law
inapplicable [5–7]. In addition, the silicon dioxide layer
has poor thermal conductivity and, as a result, most of
the heat generated within the SOI device remains con-
fined to the thin silicon film, making it susceptible to
thermal failure under electrostatic discharge (ESD)
events or even under normal switching activity during
continuous operation [5,6]. Since sub-continuum heat
conduction phenomena are very difficult to measure
directly, numerical simulations begin to play a critical
role in the thermal design and management of semicon-
ductor nanostructures.

Fig. 1 provides schematics for the computational
techniques used to predict thermal transport in solids,
and their range of applicability for length and time
scales [1,7–9]. The Fourier equation of heat conduction
is valid only when the characteristic length, L, of the
device is larger than the K by an order of magnitude



Fig. 1. Range of applicability of different computational
techniques in heat conduction as function of length and time
scales.
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or more, and when the time scale of the process, t, is
much larger than sr, which is the time required to obtain
local thermodynamic equilibrium after a thermal pertur-
bation is introduced into the phonon system. For
shorter time scales, on the order of the sr, and length
scales much larger than the K, the Cattaneo equation
is constructed by introducing a time delay between the
applied heat flux and the resulting temperature gradient.
However, these equations are limiting cases of the Boltz-
mann transport equation (BTE). They may not be able
to simulate multi-length and -time scale phenomenon
as required for an accurate thermal simulation of micro-
electronic devices. The BTE with the single relaxation
time approximation [10–15] can be used to simulate
energy transport in the sub-continuum regime, as long
as the particle assumption for the heat carriers is valid;
that is, whenever the timescale is longer than the colli-
sion time, sc, and the L is larger than the phonon wave-
length, k. When L is on the order of k, and time scales
are of the order of the collision time sc, we can no longer
assume that the particle nature of phonons is valid, and
have to perform molecular dynamics simulations for the
device. In general, extensive computational effort is
required to solve the BTE, since it involves seven inde-
pendent variables descriptive for space, time, and
momentum or velocity domain [10,11]. This has led to
the development of the lattice Boltzmann method
(LBM) that, in essence, discretizes the BTE, maintaining
its accuracy while reducing the computational effort nec-
essary to solve it [12–15]. The inherent transient nature,
reduced computational effort when compared to BTE
solutions, and the ability to capture the complex physics
of phonon transport, make the LBM an attractive
approach to describe the complex multi-scale phenom-
ena of energy transport in electronic devices. In this
paper, first we will present the derivation of the LBM
from the BTE. Then, we will use the LBM to study
sub-continuum heat conduction in thin films and
small-scale electronic devices (e.g., transient thermal
response of a simplified model of an SOI device subject
to a heat generation pulse). Finally, we will compare the
LBM predictions with those obtained by the hierarchical
equations in heat conduction.
2. BTE for phonons

The BTE for phonons under the BGK approxima-
tion is [10–15]:

of
ot

þ v � rf ¼ f 0 � f
sr

þ ge–p; ð1Þ

where f is the phonon distribution function, v is the pho-
non group velocity, ge–p is the phonon generation rate
due to electron–phonon scattering, and f 0 is the equilib-
rium distribution function given by the Bose–Einstein
statistics [16,17]

f 0 ¼ 1

eð�hx=kbT Þ � 1
; ð2Þ

where �h is the Planck constant (h) divided by 2p, x is the
phonon frequency, kb is the Boltzmann constant, and T

is the absolute temperature. In order to take advantage
of the simplifying assumptions of the Debye model, the
BTE can be cast into an equation for the phonon energy
density, e, by integrating it over the frequency spectrum
as

eðT Þ ¼
X
p

Z
f �hxpDpðxÞdx; ð3Þ

where p is the polarization of phonons (acoustic and
optical) and Dp(x) is the phonon density of states per
unit volume. For simplicity, we neglect the effects of
temperature on the dispersion relations and the phonon
density of states in this paper. Then, the BTE in a pho-
non energy density (e) formulation is given by

oe
ot

þ v � re ¼ � e� e0

sr
þ qv; ð4Þ

where e0 is the equilibrium phonon energy density and
qv is the internal heat generation rate per volume
[11,12]. In a one-dimensional analysis, Eq. (4) becomes

oe
ot

þ vx
oe
ox

¼ � e� e0

sr
þ qv; ð5Þ

where vx is the component of velocity along the x-axis.
Under non-equilibrium conditions, the conventional
definition of temperature is no longer valid [7,8]. There-
fore, we must resort to an alternative temperature defini-
tion, in which the total energy of phonons at a given
lattice point is equal to the total equilibrium phonon
energy at the equivalent equilibrium temperature. The
relation between phonon energy and lattice temperature
is obtained by using the Debye model [16,17], which
essentially collapses all phonon branches into a single,
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linear dispersion relation with one phonon propagation
speed, and is given by

eðT Þ ¼ 9gkb
h3D

Z hD=T

0

z3

ez � 1
dz

 !
T 4; ð6Þ

where hD is the Debye temperature of the solid and
g ¼ 1

6p2
kbhD
�hx

� �3
is the number density of oscillators.
3. The gray LBM

The BTE is described in continuous variables such as
the space, time, and velocity. As a discrete representa-
tion of the BTE, the LBM [18] discretizes the space
domain by defining lattice sites where the phonon energy
density is calculated. The three main components of the
LBM include the lattice, the lattice Boltzmann kinetic
equation (LBKE), and the site-to-site transport restric-
tion. The lattice is a network of discrete points arranged
in a regular mesh, as shown in Fig. 2. Phonons residing
in a particular lattice site propagate only to a neighbor-
ing lattice site by ballistically traveling at a speed of c,
which is given by the phonon velocity obtained from
the Debye model, and collide with phonons residing at
the neighboring lattice site. Since the phonons can travel
in the positive or negative direction along a specific axis
on the lattice, we introduce the subscript i to the various
phonon parameters, in order to differentiate between the
discrete values associated with each propagation direc-
tion. The temporal domain is also discretized by restrict-
ing the phonons to travel from one lattice site to the
neighboring lattice site in a definite time step, which cor-
responds to the site-to-site transport restriction. The
velocity domain is also discretized by allowing only a
discrete set of propagation velocities ci (i = 1,2,3,4) in
the main lattice directions. In Fig. 2, c1 = (c, 0) and
c2 = (�c, 0) represent the velocities in the horizontal
direction, while c3 = (0,c) and c4 = (0,�c) correspond
Fig. 2. Two-dimensional lattice and ve
to the vertical direction. It is worth mentioning that
the LBM is not only a discretized BTE, but also a
numerical scheme on its own. The LBM is used to com-
pute the thermal state of phonons at each discrete node,
at every time step based on simple kinetic equations,
which makes the incorporation of additional physics
into the system a relatively easy task.

To derive the LBKE from the BTE, the time and
space derivatives in Eq. (5), are discretized as

oe
ot

¼ eðx; t þ DtÞ � eðx; tÞ
Dt

and

oe
ox

¼ eðxþ Dx; t þ DtÞ � eðx; t þ DtÞ
Dx

;

ð7Þ

where Dx and Dt are the lattice spacing or site-to-site dis-
tance and the discrete time step, respectively. Then,
we substitute Eq. (7) into Eq. (5) and use directionality
subscripts for each direction in the lattice, to get

eiðx; tþDtÞ � eiðx; tÞ
Dt

þ ci
eiðxþDx; tþDtÞ � eiðx; tþDtÞ

Dx

¼� eiðx; tÞ � e0i ðx; tÞ
sr

þ qv. ð8Þ

As the phonons are constrained to travel only from a
lattice site to the neighboring lattice site, we define the
time step-lattice spacing relation to be Dx = ciDt. The
lattice spacing, and therefore the time step magnitude
are chosen, based on accuracy constraints, in order to
get a mesh-independent solution. In general, a lattice
spacing smaller than the phonon mean free path, and
a time step shorter than the phonon relaxation time
are recommended. The site-to-site transport restriction
allows Eq. (8) to be expressed as a discrete propagation
equation with internal heat generation equation

eiðxþ Dx; t þ DtÞ � eiðx; tÞ

¼ �Dt
sr

eiðx; tÞ � e0i ðx; tÞ
� �

þ Dtqv. ð9Þ
c4

c2

c3

c1

locity vectors in a square lattice.
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Rearranging Eq. (9) and defining the grid weight factor
Wi � Dt/sr , same for all lattice directions, we get the
LBKE that governs the dynamics of phonons in the lat-
tice as

eiðxþ Dx; t þ DtÞ ¼ ð1� W iÞeiðx; tÞ þ W ie0i ðx; tÞ þ Dtqv;

ð10Þ

where the term ei(x, t) corresponds to the discrete pho-
non energy density, which is proportional to the popula-
tion of phonons associated with a specific direction in
the lattice. The total phonon energy density is defined
as the sum of discrete phonon energy densities over all
the lattice directions, d,

eðx; tÞ ¼
Xd
i¼1

eiðx; tÞ. ð11Þ

Assuming isotropy, the equilibrium phonon energy den-
sity is considered to be same in all lattice directions and
can be obtained from Eq. (11):

e0i ðx; tÞ ¼ eðx; tÞ=d. ð12Þ

Eq. (10) is solved at each lattice site to obtain ei, and
then temperature distribution is obtained from Eq. (6).

The LBM algorithm can be summarized as

1. Set an initial temperature to find the initial phonon
energy density at each lattice site from Eq. (6).

2. Determine the directional, discrete phonon energy
density at each lattice site for all lattice directions
by using Eq. (12).

3. Apply Eq. (10) to all lattice sites and directions to
allow phonon propagation and collision.

4. Use Eqs. (11) and (12) to determine the new phonon
energy density at each lattice site.

5. Use Eq. (6) to find the lattice temperature.
6. Repeat steps 3 and 4 until desired time for simulation

is achieved.
4. Boundary conditions

To impose temperature boundary conditions, Eq. (6)
is used to find the phonon energy density that corre-
sponds to the desired temperature level. This value of
energy density is imposed to the boundary nodes, which
are then assumed to be in thermodynamical equilibrium
conditions. Energy densities for the specific direction at
the boundary nodes are obtained from Eq. (12). In addi-
tion, heat flux can be obtained by [2],

qi ¼
X
p

vif �hxDpðxÞdx ¼
X
p

viei. ð13Þ

Observing that vi is constant, Eq. (13) can be considered
as the product of the phonon group velocity and the
phonon energy density. In the gray approach, it is
assumed that only the longitudinal acoustic phonons
contribute significantly to the heat conduction, thus
the summation can be simplified to include that specific
polarization only. In one-dimensional geometry, the
relation between discrete directional phonon energy den-
sity and the net heat flux becomes:

e1ðx; tÞ ¼
q1
v1

þ e2ðx; tÞ. ð14Þ

Extending this formulation to higher dimensions is
straightforward, and the general expression for the heat
flux can be written as

qi ¼
Xd
j¼1

vi � ejðx; tÞ. ð15Þ
5. Results

We will first examine heat transport across a thin film
for different length and time scales. Then, a simplified
model of an SOI transistor will be examined. Finally,
a comparison between the results obtained via the
LBM and other methodologies will be presented.

5.1. One-dimensional heat transport across a thin film

Here, we consider one-dimensional heat transport
across a thin film of thickness L as an example. The pho-
non parameters are those of a gray model (Section 1),
that is, phonon group velocity of 6400 m/s, a phonon
mean free path of 41 nm, and a phonon relaxation time
of 6.53 ps. The initial temperature of the film is taken to
be Tw1. At time t � = 0 the right face of the film is kept at
Tw1 while the left face is set at a higher temperature Tw2.
Fig. 3 shows the dimensionless steady-state temperature
profiles in this film as calculated via the LBM for a
broad range of Knudsen numbers, Kn = K/L. Here,
dimensionless length is X � = x/L and dimensionless
temperature is T � = (T � Tw1)/(Tw2 � Tw1). In the diffu-
sive limit, where Kn is very small (Kn 6 0.1), the temper-
ature profile is linear (as predicted by the Fourier
equation). As Kn increases, a temperature slip appears
at both boundaries and a linear profile exists inside the
film, which is a characteristic behavior in the transitional
(between diffusive and ballistic) energy transfer regime.
As Kn further increases, the phonon transport processes
become ballistic and the temperature profile becomes
almost flat inside the film, displaying significant temper-
ature slip at both boundaries. These steady-state results
are in excellent agreement with those of Majumdar [2],
Zhang and Fisher [12], and Narumanchi et al. [10,11].

The transient temperature profiles in a film in the dif-
fusive regime (Kn = 0.001) are shown in Fig. 4(a). The
simulations are performed for a range of dimensionless
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Fig. 4. Transient temperature profiles in a thin film for (a)
Kn = 0.001 (diffusive regime); (b) Kn = 1 (transitional regime);
and (c) Kn = 10 (ballistic regime).

Fig. 3. Dimensionless steady-state temperature distributions in
a thin film.
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time t� � t/sr, where t is the total time of the simulation.
It is observed that our result agrees very well with the
analytical solution of the Fourier equation. This agree-
ment will be thoroughly analyzed and demonstrated in
the following section. As time progresses, the tempera-
ture profile reaches a steady-state linear profile. This
behavior is characteristic of diffusive heat transfer, and
is in excellent agreement with Fourier law.

Fig. 4(b) depicts transient temperature profiles in a
thin film for the transitional regime (Kn = 1). Unlike
the diffusive regime case (Fig. 4(a)), discontinuous tem-
perature slip conditions appear at the boundaries and
the transient temperature profile inside the medium trav-
els like a wave with a discontinuous wavefront propagat-
ing at the phonon group velocity (6400 m/s). The
temperature profiles inside the medium between the
boundary and the propagating wavefront are linear.
Therefore, at Kn on the order of unity, both the ballistic
effects, characterized by temperature jumps at the
boundaries, and the diffusive effects, characterized by a
linear temperature drop inside the film are observed.

Fig. 4(c) shows transient temperature profiles in the
ballistic regime characterized by a high Kn (Kn = 10),
where it is observed that a temperature slip occurs at
the boundary, as in the transitional regime. The propa-
gating heat wave gives origin to an almost flat tempera-
ture profile inside the film as it travels towards the cold
boundary because the phonons does not get enough
chance to undergo collisions to dissipate energy and
establish thermal equilibrium. A steady state is estab-
lished once the heat wave reaches the cold boundary.

In summary, the transition from diffusive to ballistic
heat transport in thin films is characterized by the pres-
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ence of discontinuous temperature profiles at each
boundary of the thin film, and the wave-like propaga-
tion of thermal energy. It is important to discuss the
physical meaning of the imposed boundary conditions.
The constant temperature levels at the boundaries have
the net effect of enforcing an emission of phonons at
energy level corresponding to the boundary tempera-
ture. As we approach the sub-continuum regime, pho-
nons traveling to the boundary have a significantly
different energy level than that of the phonons emitted
from the boundary. This difference in energy level results
in a non-equilibrium state inside the thin film, with the
consequence of strong scattering effects and increased
gradients in the total energy level of the phonon system,
which results in the temperature slip at the boundaries.
This slip, occurs at a length scale comparable to the pho-
non mean free path (its magnitude depends on the Kn),
has also been well documented theoretically for the rar-
ified gas dynamics.

5.2. A simplified SOI device

In this section, we model the SOI as a one-dimen-
sional silicon thin film of length L. The hotspot is mod-
eled by imposing a source term on a region of width b,
centered in the silicon layer, as shown in Fig. 5, where
the ratio b/L is equal to 0.01. The LBKE is solved in this
domain, using the constant temperature boundary con-
ditions (300 K) at both ends. The initial condition is a
constant temperature distribution of 300 K for all lattice
sites. At the beginning of the simulation, a constant heat
pulse is applied for a period of dimensionless time t�q
defined as t�q � tq=sr, where tq is the heat pulse duration,
and sr is the phonon relaxation time. The left boundary
is located at a dimensionless location X� = 0, and the
right boundary at X � = 1, where the dimensionless
length is given by X � = x/L. The transport regime is
characterized in terms of the Kn. For a Kn smaller than
1, the transport regime is located within the diffusive
regime, for a Kn on the order of 1, the transport regime
becomes transitional, and a Kn much larger than 1 rep-
resents a ballistic transport regime. The dimensionless
temperature is defined as T � = (T � Tw)/(Tmax � Tw),
Internal Heat G
Specular Bounda

Constant Tempy

x

b

L

Fig. 5. Schematic of
where Tw is the temperature at both boundaries and
Tmax is the maximum temperature level inside the
hotspot.

The dimensions and parameters used in the SOI sim-
ulation are the same as those used in the thin film simu-
lation section, with domain lengths such as to provide a
Kn range from 0.01 to 10, which covers the diffusive,
transitional, and ballistic regimes.

The time evolution of the temperature profile for the
gray LBM in the diffusive regime (L = 4100 nm,
Kn = 0.01) is shown in Fig. 6(a). The total time of the
simulation is set to t � = 60, with a pulse duration of
t�q ¼ 0:6. For t � = 0.6, just before the heat pulse is turned
off, the temperature profile inside the hotspot region
shows the maximum temperature rise. As time elapses,
the temperature profile broadens and the peak tempera-
ture rapidly decreases, characteristically similar to that
of the heat diffusion process. This result agrees very well
with the results presented by Narumanchi et al. [10] for
the transient thermal response of an SOI.

The zone between the hotspot and the boundaries
displays the characteristic shape of transient heat con-
duction. The phonon mean free path K is much smaller
than the film thickness L, and therefore, the resulting Kn

is smaller than 1. This implies that temperature slip
effects are not significant, and thus, a non-vanishing
temperature gradient can be defined at the boundary.
Fourier law, therefore, can be used to calculate the total
heat flux leaving the domain.

Decreasing the domain length by two orders of mag-
nitude, where the K has a comparable magnitude to that
of the film thickness L, marches the system into the tran-
sitional regime. For a domain length of L = 41 nm,
Kn = 1 (Fig. 6(b)). The total time of the simulation is
set to t � = 0.6, with a pulse duration of t�q ¼ 0:006. Here,
the temperature profile for t � = 0.006 depicts a maxi-
mum value at the hotspot center, and a linear evolution
with time as the energy travels away from the heated
region. As the time evolves, the temperature profile dis-
plays a strong wave nature, with high temperature zones
traveling away from the hotspot, while the temperature
decreases to an equilibrium level, that is, higher
than the initial temperature at the central region, but
eneration
ry Scattering

erature

an SOI device.
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Fig. 6. Transient temperature profiles in one-dimensional SOI
device for v = 6400 m/s and (a) Kn = 0.01 (diffusive regime)
with heat pulse duration t�q ¼ 0:6; (b) Kn = 1 (transitional
regime) with heat pulse duration t�q ¼ 0:006; and (c) Kn = 1
(ballistic regime) with heat pulse duration t�q ¼ 0:0006.
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significantly lower than the wavefront temperatures
which itself decreases by losing some energy to the
domain it travels. Finally, as the wavefront reaches the
boundary, a temperature slip characteristic of transi-
tional and ballistic regimes develops. Since the tempera-
ture gradient at both boundaries is undefined, Fourier
law is not valid, and therefore, the heat flux must be
calculated via Eq. (14).

As the Kn increases by another order of magnitude
(Kn = 10), a fully ballistic regime is obtained. The total
time of the simulation is set to t � = 0.06, with a pulse
duration of t�q ¼ 0:0006. Fig. 6(c) shows that the energy
travels in waves away from the hotspot with a nearly
constant wavefront peak temperature, which generates
a strong temperature slip upon reaching the boundaries.
A difference in the wave characteristics exists between
this ballistic regime and the transitional regime; in ballis-
tic transport the equilibrium energy after the wavefront
passes is almost the same as in the initial condition. This
is because the hot phonons undergo almost negligible
scattering and dissipate little energy while it travel
through the domain. As a consequence, the peak tem-
perature remains almost unchanged as it approaches to
the boundary.

5.3. Comparison between gray LBM and other

methodologies

5.3.1. Comparison with Fourier, Cattaneo, and

ballistic-diffusive equations for thin film heating

Transient heat conduction across a thin film is simu-
lated via the LBM and compared with several other
governing equations: Fourier, Cattaneo, and the ballis-
tic-diffusive equation (BDE) [6,7,19]. The initial temper-
ature of the film is T � = 0. At time t � = 0+, one end
(X � = 1) of the film is kept at the initial temperature
(T � = 0) while a higher temperature (T � = 1) is imposed
on the other end (X � = 0). The transient heat conduc-
tion in the film is examined at various film thicknesses.

Fig. 7(a) shows transient temperature profiles for
Kn = 0.1, transport within the diffusive regime. Results
for the LBM are similar to those for the BDE, which
itself is an approximation of the phonon BTE, with both
approaches exhibiting clear diffusive behavior, owing to
the large length and time scales. Both the Fourier and
Cattaneo equations exhibited the diffusive temperature
profiles which are in general agreement to those by the
LBM and the BDE. However they failed to capture
the temperature slip at the boundaries, due to non-equi-
librium conditions at very short time scales, between the
emitted and received phonons at the boundary.

In Fig. 7(b), transient temperature profiles for the
transitional regime (Kn = 1) are provided. The LBM
again shows a similar hot boundary temperature slip
to that for the BDE but exhibit a higher temperature
inside the domain exhibiting a more prominent ballistic
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Fig. 7. Transient heat transport in a thin film for (a) Kn = 0.1
(diffusive regime) and t � = 10.0; (b) Kn = 1.0 (transitional
regime) and t � = 1.0; and (c) Kn = 10.0 (ballistic regime) and
t � = 1.0.
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behavior than BDE. Also the LBM shows a temperature
slip at the cold boundary similar to the one at the hot
boundary which the BDE fails to capture. As expected,
both the Fourier and Cattaneo equations fail to describe
the temperature profile characteristic of the transitional
regime. The Fourier equation provides an linear profile
without any temperature discontinuities at the bound-
aries, while the Cattaneo equation gives a wave-like
behavior which does not exhibit temperature slip at the
boundaries, and does not provide propagation to the cold
boundary (X � = 1.0), unlike the other methodologies.

Fig. 7(c) depicts the temperature distributions for a
thin film within the ballistic regime. The temperature
distribution for the LBM simulation is characterized
by significant temperature slip conditions at each
boundary, and ballistic transport inside the thin film
without much decrease in the temperature, showing that
the phonons do not undergo significant scattering pro-
cesses, due to very small thickness of the film. Thus,
phonons are unable to distribute their energy and
remain at an almost constant energy level while traveling
across the film. The BDE also captures the ballistic
behavior as LBM with similar temperature jump at the
hot boundary but exhibit a higher diffusive component
resulting in more temperature drop across the film as
compared to the LBM. The Fourier equation again
shows a linear drop across the film thickness, with no
temperature slip conditions at the boundaries, thus not
capturing the ballistic transport of phonons whereas
the Cattaneo equation exhibits reflection of the temper-
ature wavefront from the cold boundary, which again is
an unrealistic scenario, and it also fails to capture the
temperature slip and ballistic transport of phonons.
Thus, both Fourier and Cattaneo equations are unable
to capture the sub-continuum behavior, indicating their
inability to predict sub-continuum energy transport
accurately.

5.3.2. Comparison with Fourier equation for SOI

simulation

Here, we compare the peak hotspot temperature rise
in an SOI simulation via the gray LBM with those
obtained from the Fourier equation. The percentage
(%) deviation is defined as

% deviation ¼ DT LBM � DT Fourier

DT Fourier

����
����; ð16Þ

where DTLBM and DTFourier are the difference between
the maximum hotspot temperature and the reference
temperature (T = 300 K) obtained from the LBM solver
and the Fourier equation solver, respectively.

These deviations can be better visualized by analyz-
ing the temporal evolution of temperature at the center
of the hotspot for both the LBM and Fourier solutions
for each regime. Fig. 8(a) shows the time evolution of
the temperature at the center of the hotspot obtained
from both the LBM and the Fourier equation for
Kn = 0.01 (diffusive regime). When the heat pulse is
switched on, we observe a roughly linear temperature
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Fig. 8. Transient temperature profile at the center of the
hotspot for Fourier equation and LBM solutions for (a)
Kn = 0.01 (diffusive regime) with heat pulse duration t�q ¼ 0:6;
(b) Kn = 1.0 (transitional regime) with heat pulse duration
t�q ¼ 0:006; and (c) Kn = 10 (ballistic regime) with heat pulse
duration t�q ¼ 0:0006.
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rise and the maximum temperatures predicted by both
methods are within 2.5% of each other. After the pulse
is turned off, the Fourier solution decays a little slower
than the LBM solution, yet still follows the general
trend.
The difference in the temporal temperature profile
becomes conspicuous for Kn = 1.0 (transitional regime),
as shown in Fig. 8(b). Both solutions provide a rapid
increase when the pulse is turned on, with the LBM solu-
tion shows approximately 50% higher temperature than
the Fourier equation prediction. But when the pulse is
turned off both the approaches exhibits considerably dif-
ferent thermal relaxation, where as the Fourier equation
predicts an exponential decrease, the LBM solution pre-
dicts a sudden fall in temperature due to the non-equilib-
rium nature of the heating followed by a slower
relaxation of energy.

Similar behavior is again observed as the Kn is
increased to 10, as shown in Fig. 8(c), which is in the bal-
listic transport regime. This regime has a highly non-
equilibrium behavior with the LBM result showing
almost an order of magnitude higher peak temperature
rise than the Fourier equation predictions. This result
is consistent with the observations made by many
authors who have claimed that the Fourier equation
underestimates the maximum temperature substantially
as the we move towards sub-continuum (high Kn)
regime and does not adequately capture the highest tem-
perature levels present in sub-continuum energy trans-
port, which is important in the design and operation
of the next generation electronic devices, especially
transistors.
6. Conclusions

A gray lattice Boltzmann method is developed for
phonon transport under the Debye assumption, and
employed to examine multi-length and -time scale heat
conduction in thin films from continuum to sub-contin-
uum regimes. The steady-state and transient results
capture the characteristic temperature profiles in the dif-
fusive, transitional, and ballistic regimes. A simplified
model of an SOI transistor is used to predict the tran-
sient thermal response of the device to heat generation
due to electron–phonon scattering. The LBM results
agree very well with those of the Fourier, Cattaneo,
and BD equations available in the literature
[2,6,10,19,20]. As expected, both the Fourier and Catta-
neo equations result in significantly different results than
those of the LBM when the sub-continuum effects
become dominant. It is considered that the LBM is
capable of capturing the physics of heat conduction by
phonon transport in multiple transport regimes, and
thus can be used in the thermal design and modeling
of sub-micron electronic devices e.g., SOI transistors.
The LBM results reported here exhibit excellent agree-
ment with other methodologies for their range of appli-
cability, at a lesser computational effort, thus presenting
itself as a valid, accurate numerical simulation tool for
multi-length scale energy transport.
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